Group Theory
Week \#7, Lecture \#26

Setup: $-G$ finite group

- Prime, piG
- $|G|=p^{k} m, p \nmid m$

Lemma If \mathbb{P} is a normal p-Slow subgroup of G, then P contains every p-subgroup of G.
Proof. Let $H \leq G, \| H=p^{r}$ for some $r \geqslant 1$. Let $a \in H$. Then the order of a divides the order of H (by Lagrange), and so $O C a)$ is also a power of p.

- Since $P \triangleleft G$ by assumption e, we may view the left coset a P as an element of the factor group, G / P.
- Note that $(a P)^{o(a)}=a^{o(a)} P=e P=P$.

Thus, ocaP) divides $O(a)$, and so it is also a power of P.

- On the other hand,
$O(a P)||G / P|=[G: P]=m \quad$ (again by Lagrange),
which is coprime to p (Since $P \in \operatorname{Syp}_{p}(G)$)
- Hence: $O(a P)=1$, which means a $P=P$, or, $a \in P$

This shows $H \leq P$
Theorem (Sylow II) All p-Sylow subgroups of G are conjugate.

$$
S_{y} l_{p}(G) \geq S=\{\text { conjugate subgroups of } P\}=\left\{Q \leq G: Q=g P g^{-1} \text {, for some } g \in G\right.
$$

and consider the conjugation action of the group P on the set S

$$
P \times S \rightarrow S \quad(x, Q) \rightarrow \times Q x^{-1}
$$

Ex If $P \Delta G$, then $g P g^{-1}=P, \forall g \in G$, and so $S=\{P\}$
Exr If $G=S_{3}, p=2$, and $P=\langle(1,2)\rangle \cong \mathbb{Z}_{2}$, then

$$
S=\left\{\begin{array}{c}
\langle(1,2)\rangle,\langle(13)\rangle,\langle(23)\rangle\} \\
O_{(12)}
\end{array} \quad\left(\begin{array}{l}
\text { the generator }(12) \text { of } P \text { fixes } \\
P \text { and interchanges the other } \\
z \text {-sylow subgranps }
\end{array}\right)\right.
$$

Step 1 (a) Suppose Q is fixed by P, i.e, $P \subseteq N(Q)$. Then:

- $|Q|=|P|=p^{k}$
- $p \nmid m=[G: Q]$ (Conn gte sulgmps have Same order)
- $[G: Q]=[G: N(Q)] \cdot[N(Q): Q] \quad$ (by properties of index) Cby assumption)

Hence: $P X[N(Q): Q] \Rightarrow Q \in S y e_{p}(N(Q))$
But we also know that $Q \triangleleft N(Q)$ (clays the case!)
Hence, by the Lemma: Q contains all p-subgronps of N(Q)
(b) Now recall our assumption in Step: $P \subseteq N(Q)$

Thus, by $(A \subseteq Q \quad$ (since P is a p-group)
But $|P|=|Q|$, and this $P=Q$
So we showed: $\quad(1) \quad S^{P}=\{P\} \quad\left(\begin{array}{l}\text { the only } Q \in S \text { fixed } b y \\ \text { conj action of } P \text { ir } P\end{array}\right.$
(c) We use now the Class Equation for p-grips acting on sets:

$$
|S| \equiv\left|S^{P}\right| \quad(\bmod p)
$$

But $\left|S^{P}\right|=1$ by (A), and so we conclude that

$$
|S| \equiv 1 \quad(\bmod p)
$$

Step 2. Now let Q be any p-Sylow subgroup of G, and consider the conjugation action of Q on the same set S as above.

- Again by the Class Equation for p-groupactions:

$$
\begin{array}{cc}
\substack{\alpha+1 \| \\
1} & (\operatorname{lnod} p) \\
= & +S^{Q} \mid \\
\quad \text { by step } 1
\end{array}
$$

- So $\left|S^{Q}\right| \equiv 1(\bmod p)$; in particular, $S^{Q} \notin \phi$: Hence, $\exists k \in S^{Q}$ such that $x k x^{-4}=k, \forall x \in Q$, ie,, $\mid Q \subseteq N(k)$
- But $K \triangleleft N(k)$ [allays!], and also $|K|=|p|=p^{k}$ since $k \in S$ is a corjiggete of P
and so K is a normal p-Sylow subgroup of $N(E)\left(\begin{array}{ll} \\ m \times N\end{array}\right.$
- Applying the Lemma to (**) and ($(* *)$, we get:

$$
Q \subset K
$$

$$
\text { s }\left(\begin{array}{l}
Q \text { is a p-group in } N(K) \\
k \text { normal } \\
p-\text { - } y \text { low in } N(K)
\end{array}\right)
$$

- But again $|Q|=|k|=p^{k} \Rightarrow Q=k$
- Finally, recall $K \in S^{Q} C S=\{$ conjingates of $P\}$, and so Q is also a conjugate of P.

Theorem (Sylow $\frac{\pi}{1}$) For each prime $p\left||G|=p^{k} m\right.$, the number $n_{p}=n_{p}(G)$ of p-Sylow subgroups of G satisfies:

$$
\begin{aligned}
& -n_{p} \equiv 1 \quad(\bmod p) \\
& \cdot n_{p} \mid m
\end{aligned}
$$

Proof Let $P \in S_{y} \ell_{p}(G)$, and $S=\left\{g P g^{-1}: g \in G\right\}$
By Sylow II: $S=$ Syl (G), and so $n_{p}=|S|$
Step Consider the conjugation action of P on S.
By Class Eq: $\quad\left|S^{\prime}\right| \equiv\left|S^{P}\right| \quad(\bmod p)$

$$
\therefore \quad n_{p} \equiv 1 \quad(\bmod p)
$$

Step 2 Now consider the conjugation action of G on S.
By sylow III, the orbat G.P is all of S. Hence:

$$
\begin{equation*}
n_{p}=|S| \xlongequal{=}|G \cdot P|=\left[G: G_{p}\right] \underset{\text { p }}{=}[G: N(P)] \tag{*}
\end{equation*}
$$

Orbst-stabilizer Thm lydef of normalizer
Now:

$$
m_{\text {Pisp-Splew }}^{=}[G: P]=[G: N(p)] \cdot[N(P): P]=n_{p} \cdot[N(p): p]
$$

$$
\therefore x_{p} / \mathrm{m}
$$

Remarks / conrequences of sylow I-III
(1) If $n_{p}=1$, then there is a siigle p-Sylors subgmap, and that subgroup must be normal (and coversely):

$$
\left.\begin{array}{rl}
x_{p}(G)=1 \Longleftrightarrow\left(S y l_{p}(G)=\{P\} \& \underset{j}{ } \Leftrightarrow(G)\right.
\end{array}\right]
$$

(2) Th re-emphasize the point of Sylow II:

$$
\frac{\mid \operatorname{Syl}_{p}(G)=}{} \frac{\{\text { conjug ctes of } P \text { in } G\}}{}\binom{\text { where } P \text { is cu } p \text {-sylow subgomp) }}{\text { whic exists by sylow I }}
$$

(3) Erery p-subgroup in G is contained in a p-Sylor. schematic:

Thatis, p-Sylow subgroups are maximal among all p-subgroups of 6 (bet not necessarily among)

Examples/Applications

- One of the main apple. of sylin theory is to show That certain large classes of finite groups are nat simple, i.e., contain wo non-trivil, proper normal subgroups.
- Basic. idea: try to find $p|G|$ such that $n_{p}=1$, which then implies $\supset P \triangleleft G$ (by rem 1) and so done. (Usually start with largest $P \mid G$)
- Otherwise, determine a short list of $\mid n_{p} ः p 193$ and use other frats from group theory to fund $1 \neq N \nsubseteq G$.
Ex| $|G|=100=2^{2} \cdot 5^{2}$
not simple
sylow III:

$$
\begin{aligned}
& n_{5} \equiv 1(\bmod 5) \& n_{5} \mid 4 \\
& \therefore n_{5}=1
\end{aligned}
$$

Hence G is not single (by fem. 1)
Ex $2 \quad G \mid=28=2^{2} \cdot 7 \quad$ not simple

$$
n_{7} \equiv 1(\bmod 7) \& n_{7} 14 \Rightarrow n_{7}=1
$$

Ex 3 $|G|=24=2^{3} \cdot 3 \quad$ not simple

- $n_{3} \equiv 1(\bmod 3) \& n_{3} \mid 8 \Rightarrow n_{3}=1$ or 4
$\left(n_{3} \in\{1,2,4,8\}\right)$
- $n_{2} \equiv 1(\bmod 2) \& n_{2} / 3 \Rightarrow n_{2}=1$ or 3

Asiole: $\left|S_{4}\right|=24$ and $n_{2}=3, n_{3}=4$ so has no normal sylows but it is still not simple - it has normal, non-sylow subgroups Note: $S_{y} l_{2}\left(S_{4}\right) \& S_{y} \mathrm{~S}_{3}\left(S_{4}\right)$ computed last time
If $n_{2}=1 \rightarrow$ done
Suppose $n_{2}=3$, so $S=\operatorname{Syl}_{2}(G)=\{\underset{R}{P}, R, R\}$
2-Sylows, all coningate
o naze 8)
Consider the conjingation
action of G on S. By Syfor II: $G \cdot P=S(*)$

$$
\left(\begin{array}{l}
\text { the action transitive, i.e., } \\
\text { it has a single orbit }
\end{array}\right.
$$

This actim has an associated hoo,

$$
\varphi: G \longrightarrow \operatorname{Sym}(S)=S_{3}
$$

But $\quad|G|=24>6=3!=\left|S_{3}\right|$
so $k: \operatorname{zeg}(\varphi) \neq\{e\}$ (otherwise, $G \simeq \varphi(G)$, aralgore of S_{3} ?
But also $k \neq G$, since otherwise φ is the trinal hon, and so the action of G on sis trivial, ie $G \cdot X=3 \times 1$, for all $x \in S$. But this con tradicts $\left(-x^{\prime}\right)$, which says $G \cdot P=S$, so orbits have sore 3, not 1.
$\therefore \quad \mid \neq K \underset{\neq}{\triangle} G$ is a urtivial, proper subgrapp

Ex $\quad|G|=72=8 \cdot 9=2^{3} \cdot 3^{2}$
not simple

- $n_{3} \equiv 1(\bmod 3)$ \& $n_{3} \mid 8 \Rightarrow n_{3}=1$ or 4
- $n_{2} \equiv 1(\bmod 2) \& n_{2} \mid 9 \Rightarrow n_{2}=1,3$, or 9
- If either $n_{2}=1$ or $n_{3}=1$ - olone (By Remark)
- If $n_{3}=4$, then get transitivitire rep from Sher on IT, with $S=3 P, Q, R, T 3$

$$
\varphi_{i} G \longrightarrow \operatorname{Sym}(S)=S_{4}
$$

But $|G|=72>24=4!=1 S_{4} \mid$
so $K i=\operatorname{ker}(\varphi) \triangleleft G$ is nontrivial, and also proper subjoins, by transitivity of the action done

Note: The method from Examples 3 \& 4 works if $|G|=\phi^{k} \cdot m$ and $\phi^{k} \cdot m>m$!

Ex 5 $|G|=12=2^{2} .3$

- $n_{3} \equiv 1(\bmod 3) \& n_{3} 14$
not simple
- $n_{2} \equiv 1(\bmod 2) \& n_{2} 13 \Rightarrow n_{3}=1$ or 4
note: for $p=3 \quad 12 \neq 4!$ - So wither of the above methods works!
- for $\begin{aligned} & p=2 \quad 12>3! \\ & m=3\end{aligned}$
- so second method works -try it!
Suppose $n_{3}=4$. Then all 3-sylows are cyclic of order 3 (since even gimp of order p is cyclic), and so
they canon of intersect except at e.
so $\quad t_{3}=4 \cdot(3-1)=8$

Hence, there are only 4 elements left in la (the indenting \& 3 others), so they must comprise a 2 -Sylon subgroup, which must te unique, i.e, $n_{2}=1$

Ex 6 $\quad|G|=30=2 \cdot 3 \cdot 5$

$$
\begin{aligned}
n_{2} \equiv 1(\bmod 2), n_{2} 115 \Rightarrow n_{2}=1,3,5, \text { or } 15 \\
\cdot n_{3} \equiv 1(\bmod 3), n_{3} 110 \Rightarrow n_{3}=1 \text { or } 10 \\
\cdot n_{5} \equiv 1(\bmod 5), n_{5} 16 \Rightarrow n_{5}=1 \text { or } 6
\end{aligned}
$$

- Suppose $n_{3} \neq 1$, ie., $n_{3}=10$
if $P \& Q$ are distinct salons (of order 3), then

$$
P \cap Q=\{e\} \quad\binom{\text { since }|P \cap Q| \mid 3}{\text { and } P \cap Q \neq P}
$$

so $t_{3}=10.2=20$

- Suppose also that $n_{5} \neq 1$, le., $n_{5}=6$. Then

$$
t_{5}=6 \cdot 4=24
$$

Thus, of $n_{3} \neq 1 \& n_{5} \neq 1$, then

$$
t_{3}+t_{5}=20+24=44>30 \text { contr }
$$

\therefore Either $n_{3}=1$ or $n_{5}=1$

