Step 1 (a) Suppose Q is fixed by P, he,
$$P = N(Q)$$
. Then:
• $|Q| = |P| = p^k$ (conjugate subgraps have some order)
• $p(m) = [G:Q]$ (by assumption)
• $[G:Q] = [G:N(Q]] \cdot [N(Q):Q]$ (by properties of under)
Hence: $P(EN(Q);Q] \Rightarrow Qesp(N(Q))$
But we also know that $Q \leq N(Q)$ (dways the case!)
Hence, by the Lemma: $O(Q$ contains all p-subgroups of N(Q))
(b) Now recall our assumption in Step1 : $P \leq N(Q)$
Thus, by O : $P \leq Q$ (since P is a p-group)
But $(P|=|Q|)$, and thus $|P=Q|$
so we showed: $(P| \leq P + P)$ (the ord $Q \leq S$ fixed b)
(c) We use now the Class Equation for p-groups acting a sets:
 $[S] \equiv [SP]$ (mod p)
But $(SP|=|V|(R), and so we conclude their
 $[S] \equiv [Cmadp] = 0$$

So
$$[S^{Q}] \equiv 1 \pmod{p}$$
, is particular, $S^{Q} \neq \emptyset$.
Hence, $\exists K \in S^{Q}$ such that $KKX^{H} = K$, $\forall K \in Q$, i.e.,
 $[Q \subseteq N(K)]$ (M)
But $K \leq N(K)$ colongest, and also $[K] \equiv 1P| = p^{k}$
since $k \in S is a conjugate dP$
and so $[K is a normal $p = Sylow Subgroup d = N(K)]$ (Som)
• Applying the Lemma to (kx) and (kx) , we get:
 $Q \subseteq K$ $f(R is a p-group in N(K))$
• But again $|Q| = [K] = p^{k} \Rightarrow [Q = K]$
• Finally, recall $K \in S^{Q} \subseteq S = i \operatorname{conjugates d} P_{j}$, and so
 Q is also a conjugate $d^{Q}P$.
Theorem $(Sylow III)$ For each prime $p[[G] = p^{k}m$, the
number $n_{p} = n_{p}(G) \neq p = Sylow subgroups of G satisfies:
 $\therefore n_{p} \equiv 1$ (mod $p)$
 $\therefore n_{p} = 1$ (mod $p)$
 $Step1$ Consider the conjugation action of P on S .
 B'_{T} (lass Eq: $|S| \equiv |S|^{p}|$ (mod $p)$
 $n_{T} \equiv 1$ (mod $p)$
 $T_{T} \equiv 1$ (mod $p)$$$

Step 2 Now consider the conjugation action of G on S.
By Sylow I, the orbit GP is all
$$\oint S$$
. Hence:
 $n_p = |S| = |G \cdot P| = [G : G_p] = [G \cdot N(P)]|$ (R)
 $n_p = |S| = |G \cdot P| = [G : G_p] = [G \cdot N(P)]|$ (R)
 $n_p = |S| = [G : N(P) \cdot END i P] = n_p \cdot EN(P) \cdot P]$
 $Pi p \cdot Splow = b o i$
 $n_p = m$ (RE)
Remarks / consequences $\oint Sylow I - IN$
() If $n_p = |$, then there is a single p-Sylow subgrap
and that subgroup must be normal (and coverselp):
 $n_p(G) = l \iff (Syl_p - EP) + P \cdot G)$
 $(P \neq G \iff Sylow I) = n_p + P \cdot G)$
 $(P \neq G \iff Sylow I) = (Syl_p - Sylow Subgrap)$
(P $p \in G = S = Conjugates of P = I + G)$
 $(P \neq G \iff Sylow I) = (Syl_p - Sylow Subgrap)$
(2) To re-emphasize the point of Sylow II :
 $Syl_p = (G) = S = Conjugates of P = I + G)$
 $(ube e P is any p - Sylow Subgrap)$
(3) Every p-Subgroup in G is contained in a p - Sylow .
 $(P = Sylow I) = Sylow P - Sylow I) = Sylow I = Sylow I = Sylow I = Sylow I)$
 $(P = Sylow I) = Sylow I = Sylow I = Sylow I) = Sylow I = Sylow I = Sylow I = Sylow I)$
 $(Ube e P = Si = Conjugates of P = I + G)$
 $(ube h = P = Si = Sylow P - Sylow I) = Sylow I = Sylow I = Sylow I = Sylow I)$
 $(P = Sylow I) = Sylow P - Sylow I) = Sylow I = Sylow I = Sylow I = Sylow I = Sylow I)$
 $(P = Sylow I) = Sylow P - Sylow P - Sylow I) = Sylow I = Sylow I = Sylow I = Sylow I)$
 $(P = Sylow I) = Sylow P - Sylow P - Sylow I) = Sylow I = Sylow I) = Sylow I = Sylow$

That is, p-Sylaw and groups are maximal away
all p-subgroups of 6 (Let ust use events among)

$$\frac{Examples/Applications}{dl_salgroups}$$
• One of the main app. of Sylaw theory is to show
that certain large classes of finite groups are
met simple, i.e., contain no non-twill proper
normal subgroups.
• Basic idea: try to find pl Gl such that
 $m_p = 1$, which then nepfer $\ni P \ge 6$ (grean)
and so dore. (Unally shot with logest pl6)
• Otherwise, obtermine a short list of lm_p : pl63
and use other facts from group theory to fund
 $1 \pm N \neq G$.
 $E \ge 1$ [G]=100=2².5² not simple.
Sylow II: $m_p = 1$ (mod 5) & $m_p = 1$,
 $m_p = 1$ (mod 5) & $m_p = 1$,
 $m_p = 1$ (mod 7) & $m_p = 1$ ($m_p = 1$)
 $E \ge 24 = 2^3.3$ not simple

ⁿ
$$m_3 \equiv 1 \pmod{3} g m_3 | g m_3 | g m_3 \equiv 1 \text{ or } 4$$

 $(m_3 \in \{1\}_{2,4,8\}})$
ⁿ $m_2 \equiv 1 \pmod{2} g m_2 | 3 m_2 = 1 \text{ or } 3$
Aside: $|S_{1}| = 24$ and $m_{2-3}, m_{3} = 4$
but it is still not simple - it has normal,
 $non-Sylow subgraps$
 $Nde: Sylow g Sylow for computed left time
Suppose $m_2 = 3$, so $S = Syl_2(6) = \{P, Q, R\}$
 $(consider the conjugation
 $actim of 6 \text{ on } S \cdot g Sylow II : G \cdot P = S \}(k)$
(the actimus transitive, i.e.,)
This actim has an essented hom,
 $[Q: G \longrightarrow Sym(S) = S_3]$
But $[G] = 24 > 6 = 3! = 1S_3]$
so $k = 461$, she attenwise g is the trivial how
 $and so the actim g is m Sir trivial, i.e. $G \cdot S = 3$, so $f = 15$, $f = 15$$$$

Hence, there are only 4 elements left in the (the
identity & 3 others); so they must complise a
2-Sylow subgroup, which must be unique, i.e,
$$n_{z}=1$$

 $Ex.6$ [S] = 30 = 2 · 3 · 5
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \ln 5 \Rightarrow n_z = l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, or 15
 $n_z \equiv 1 \pmod{2}$, $n_z \equiv l_{,3}, s$, $n_z \equiv l_{,3}, s$